Conformal vector fields and conformal transformations on a Riemannian manifold
نویسندگان
چکیده
In this paper first it is proved that if ξ is a nontrivial closed conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1 being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci curvature in direction of a certain vector field is non-negative, then M is isometric to the n-sphere S(c), where S = n(n − 1)c. Finally we show that a conformal transformation F : M → M of a Riemannian manifold (M, g) that preserves the eigenfunctions that is ∆′h = −λh whenever ∆h = −μh, for constants λ, μ, (g′ = F ∗g and ∆′ and ∆ are Laplacian operators on (M, g′) and (M, g) respectively), then F is a homothety. M.S.C. 2010: 53C20,53A50.
منابع مشابه
On Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric
Let be an n-dimensional Riemannian manifold, and be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation induces an infinitesimal homothetic transformation on . Furthermore, the correspondence gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on onto the Lie algebra of infinitesimal ...
متن کاملOn conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملComponentwise conformal vector fields on Riemannian almost product manifolds
On a Riemannian almost product manifold, the notion of a componentwise conformal vector field is introduced and several examples are exhibited. We show that this class of vector fields is a conformal invariant. For a compact manifold, a Bochner type integral formula for the Ricci tensor on such vector fields is obtained. Then, integral inequalities which link a curvature condition with the exis...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملConformal diffeomorphisms and curvatures
In a study of Riemannian manifolds admitting conformal transformation, the Riemannian and Ricci curvatures play an important role for characterizations and classify such a manifold. In this note, we summarize known results about Riemannian manifold admitting conformal transformations and related topics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012